Вторая лекция аксиомы единства




Скачать 223.69 Kb.
НазваниеВторая лекция аксиомы единства
страница1/3
Дата публикации25.04.2013
Размер223.69 Kb.
ТипЛекция
litcey.ru > Математика > Лекция
  1   2   3


ЗАБЛУЖДЕНИЯ ИССААКА НЬЮТОНА
ВТОРАЯ ЛЕКЦИЯ АКСИОМЫ ЕДИНСТВА
Канарёв Ф.М.
Анонс. Главный принцип научного поиска – установление начала формирования изучаемого физического процесса или явления.
1. Общие сведения о динамике Ньютона
Динамика Ньютона – фундамент расчётов механических движений материальных точек и тел считалась полностью безошибочной. Однако, первый её закон, не имея математической модели, сформулирован с нарушением причинно-следственных связей. Суть этого нарушения заключается в том, что причиной любого движения материальной точки или тела является действие силы на них. Но первый закон Ньютона отрицает это. Он сформулирован следующим образом: «материальная точка сохраняет своё состояние покоя или равномерного движения до тех пор, пока приложенные силы не выведут её из этого состояния». Из этого определения следует, что при равномерном движении точки сумма сил, действующих на неё, равна нулю. Так как тело не может двигаться без действия силы, то возникла необходимость найти причины движения тела в условиях, когда, как следует из первого закона Ньютона, сумма сил, действующих на него, равна нулю

Нам известно, что для выявления причины сформировавшегося противоречия надо найти начало её формирования. Суть этого начала заключается в том, что Ньютон поставил на первое место закон равномерного движения твёрдого тела, которое всегда появляется после ускоренного движения любого тела и поэтому является его следствием. В реальности причина всегда первична, а следствие этой причины – вторично, поэтому на первое место надо было поставить закон ускоренного движения, а на второе – равномерного.

Таким образом, из первого закона динамики Ньютона следует, что если тело движется равномерно и прямолинейно, то сумма сил, действующих на него, равна нулю, а если тело вращается равномерно, то сумма моментов, действующих на него, также равна нулю.

Однако, автомобиль, проехав равномерно и прямолинейно, например, 10км., расходует бензин. В результате совершается работа, величину которой можно рассчитать теоретически. Или, если тело вращается равномерно, то на это вращение также расходуется энергия и её тоже можно рассчитать теоретически и определить экспериментально, а первый закон Ньютона отрицает это, утверждая, что сумма моментов, действующих на равномерно вращающееся тело, равна нулю. Это значит, что на равномерное вращение тела энергия не расходуется. Забавно получается, когда начинаешь осознавать, что эти фундаментальные теоретические противоречия спокойно живут столетия и заполняют головы учащейся молодёжи. Теоретики, вместо поиска причин этих противоречий, яростно доказывают их отсутствие [1].

Понятие «Динамика» родилось давно и уже получило различные приставки, которые ограничивают смысл, заложенный в этом понятии, и таким образом конкретнее отражают суть описываемых явлений и процессов. Например, давно используются понятия «Электродинамика», «Гидродинамика» и «Аэродинамика». Появилось понятие «Электродинамика микромира». В результате возникает необходимость выделить динамику, описывающую только механику твёрдых тел. С учётом этого вводим понятие «Механодинамика», в которое закладывается смысл динамики механических движений твёрдых тел, которые описывались до этого понятием «Динамика» [2].
2. МЕХАНОДИНАМИКА
Механодинамика - раздел теоретической механики, в котором устанавливается и изучается связь между движением материальных точек и тел, и силами, действующими на них.

Основные модели реальных объектов в механодинамике - материальная точка и абсолютно твердое тело. В качестве материальных точек рассматриваются такие реальные объекты, у которых различиями в движении отдельных точек можно пренебречь. Если же этого сделать нельзя, то движение такого объекта рассматривается, как движение твердого тела.

Абсолютно твердое тело - это совокупность материальных точек, расстояния между которыми не меняются со временем. Из этого следует, что материальная точка – частный случай твёрдого тела.

Совокупность материальных тел, в которой они не могут двигаться независимо друг от друга, благодаря связям между ними, называется механической системой.

Законы механодинамики базируются на фундаментальных аксиомах Естествознания: пространство и время абсолютны, пространство, материя и время не разделимы. Достоверность аксиом следует из очевидности их утверждений. Достоверность законов механодинамики, которые базируется на аксиомах, не очевидна и доказывается экспериментальным путём, поэтому законы механодинамики нельзя считать аксиомами, они – постулаты [1], [2].

^ 2.1. Классификация движений и

последовательность решения задач механодинамики
Начало решения любой задачи механодинамики начинается с установления вида и фазы движения материальной точки, твёрдого тела или механической системы. Существуют следующие виды движений материальных точек, твёрдых тел и механических систем: прямолинейное, криволинейное, вращательное и сложное движения. Все виды этих движений имеют фазы. Первая фаза – ускоренное движение, вторая - равномерное движение и третья – замедленное движение. В некоторых случаях движение может состоять из двух фаз: ускоренного и замедленного. Например, тело, брошенное в поле силы тяжести вверх, имеет только две фазы движения: ускоренное и замедленное.

После установления вида движения материальной точки, твёрдого тела или механической системы определяются фазы их движения. При этом надо помнить, что любое движение любого материального объекта начинается с фазы ускоренного движения, поэтому для получения полной достоверной информации о движении любого материального объекта надо начинать с анализа фазы его ускоренного движения. Для этого объект исследования изображается графически, упрощённо и к нему прикладываются векторы всех сил и моментов, действующих на этот объект в фазе его ускоренного движения.

Первыми составляются кинематические уравнения движения объекта в фазе ускоренного движения и при наличии исходных данных определяются скорость и ускорение ускоренно движущегося объекта.

Затем составляются векторные уравнения сил и моментов, приложенных к объекту в фазе его ускоренного движения. Если для решения задачи необходимо иметь проекции сил и моментов на координатные оси, то составляются уравнения сил и моментов, приложенных к объекту в проекциях на оси координат.

После этого начинается определение всех остальных механических показателей, характеризующих ускоренное движение объекта [1], [2].

На практике часто встречаются задачи с фазой ударного действия силы на объект перед началом его ускоренного движения. Поэтому фаза движения объекта под действием ударной силы также анализируется отдельно.
^ 2.2. Основной закон механодинамики
Многовековой опыт использования второго закона Ньютона показал его безупречную достоверность, поэтому у нас есть основания поставить его на первое место и назвать основным законом механодинамики [1], [2].

Согласно основному закону механодинамики, сила , действующая на материальное тело, движущееся с ускорением , всегда равна массе тела, умноженной на ускорение и совпадает с направлением ускорения.

(1)
Чтобы отличать силу , формирующую ускорение, от других сил, назовём её ньютоновской силой. Она всегда совпадает с направлением ускорения , которое она формирует. Все остальные силы являются силами сопротивления движению и формируют не ускорения, а замедления, которые мы обозначаем символом .
^ 2.3. Главный принцип механодинамики
В 1743 г. Даламбер дополнил основной закон Ньютона своим постулатом: в каждый данный момент времени на движущееся тело действует сила инерции, равная произведению массы тела на ускорение его движения . Эта сила направлена противоположно ньютоновской силе (1). С тех пор этот постулат начали называть принципом Даламбера. При этом игнорировался тот факт, что ускоренно тело движет только ньютоновская сила , а все остальные силы, в том числе и сила инерции, тормозят ускоренное движение. Из этого автоматически следует, что модуль силы инерции не равен произведению массы тела на ускорение его движения. Обусловлено это тем, что сила инерции является силой сопротивления ускоренному движению и поэтому наряду с другими силами сопротивления генерирует замедление, а не ускорение. Поскольку ньютоновская сила – единственная движущая сила, то, ускорение, генерируемое ею, должно быть равно сумме замедлений, генерируемых всеми силами, тормозящими ускоренное движение, в том числе и силы инерции [1], [2]. Изложенное выше следует из эксперимента Галилея, который он провёл в начале 17 века. Суть его показана на рис. 1.



Рис. 1. Современное представление эксперимента Галилея
Если одному металлическому шару предоставить возможность свободно падать на Землю, а второму - опускаться на парашюте, то шар без парашюта, имея меньшее сопротивление воздуха, будет падать на Землю быстрее шара с парашютом. Сила тяжести , приложенная к шару, выполняет роль ньютоновской активной силы (рис. 1, а). Поскольку шар опускается ускоренно, то, согласно принципу Даламбера, на него действует сила инерции, направленная противоположно ньютоновской силе и равная . Кроме этих сил на шар действует ещё сила сопротивления воздуха . Вполне естественно, что у шара с парашютом сила сопротивления воздуха больше и он снижается на Землю медленнее шара без парашюта.

Итак, сила тяжести единственная сила, движущая шар. Движению шара к Земле сопротивляются две силы: сила инерции и сила сопротивления воздуха . Согласно принципу Даламбера в каждый данный момент сумма сил, действующих на ускоренно движущееся тело, равна нулю (рис. 1, а), то есть
. (2)
Странный результат (2). При равенстве ускорений ньютоновской силы и силы инерции сила сопротивления воздуха, действующего на шар, равна нулю . Противоречие очевидное и непонятно почему с ним мирились механики – теоретики и физики более 300 лет. Чтобы устранить это противоречие, введём понятие замедление движения и обозначим его символом и будем считать, что модули всех сил сопротивления движению равны произведениям массы материальной точки или тела умноженной на замедления, которые они генерируют. Тогда уравнение (2) запишется так
, (3)
где - замедление, генерируемое силой инерции; - замедление, генерируемое силой сопротивления воздуха.

В общем случае ускорение, генерируемое ньютоновской силой, обозначается символом . Тогда, если на ускоренно движущуюся точку или тело действует несколько сил сопротивления движению, то каждая из них будет генерировать замедление и уравнение (3) принимает вид

. (4)
Таким образом, Даламбер ошибся, утверждая, что сила инерции равна произведению массы материальной точки или тела, умноженному на ускорение его движения и направлена противоположно действию Ньютоновской силы. Теперь мы видим, что сила инерции при ускоренном движении материальной точки или тела, препятствует их движению и совместно с другими силами сопротивления движению генерирует замедление, которое является частью общей суммы замедлений, генерируемых всеми силами сопротивления движению (4).

А теперь посмотрим на рис. 1, b, где показана суть эксперимента Галилея. Представим, что шар без парашюта и с парашютом помещены в большой цилиндр, из которого выкачан воздух. Оба они опускаются вниз под действием силы тяжести . (Массу парашюта не учитываем). Аналогичный эксперимент, выполненный Галилеем более 300 лет назад, показал, что тела разной массы и плотности опускаются вниз в трубке с выкаченным воздухом, с одной и той же скоростью. Удивительный эксперимент. Отсутствие сопротивления воздуха оставляет одну силу сопротивления ускоренному движению шара без парашюта и с парашютом – силу инерции . Падение происходит потому, что величина силы тяжести в каждый данный момент превышает величину силы инерции и процесс падения шара без парашюта и с парашютом описывается неравенством

. (5)
Когда действие ньютоновской силы прекращается (), то сила инерции никуда не исчезает. Она меняет своё направление на противоположное и её действие обеспечивает равномерное движение тела, как говорят, движение по инерции. Математическая модель, описывающая это движение, становится такой
(6)
Из этого автоматически следует ошибочность первого закона Ньютона, утверждающего, что сумма сил, действующих на равномерно движущееся тело, равна нулю. Из такого утверждения также сразу следует нарушение принципа причинности. Тело не может двигаться без причины. Оно всегда движется только под действием приложенной силы.

Изложенная информация убедительно доказывает, необходимость признания ошибочности принципа Даламбера и использования нового главного принципа механодинамики, который формулируется так: в каждый данный момент времени сумма активных сил, приложенных к телу, и сил сопротивления движению, включая силу инерции, равна нулю. При этом, ньютоновское ускорение всегда равно сумме замедлений, генерируемых силами сопротивления движению, включая и силу инерции.

Изложенная исходная информация о видах движения тел, ньютоновской силе и силе инерции достаточна для понимания законов механодинамики и применения их для решения практических задач.
  1   2   3

Похожие:

Вторая лекция аксиомы единства iconФизический смысл тепла и температуры канарёв Ф. М. Десятая лекция...
Происходит это потому, что элементарный носитель тепловой энергии – фотон существует в рамках Аксиомы Единства, а теоретики пытаются...
Вторая лекция аксиомы единства iconНовая первая лекция аксиомы единства
Представим эту информацию в виде лекций главного судьи достоверности научных знаний – аксиомы Единства. Изучение цикла её лекций...
Вторая лекция аксиомы единства iconЛекция аксиомы единства канарёв Ф. М. kanarevfm
Теперь у них есть возможность присвоить эти названия зримым структурам осколкам ядер, которые оставляют следы в экспериментах на...
Вторая лекция аксиомы единства iconДевятая лекция аксиомы единства
Понятия тепло и температура самые неопределенные в современной науке. Физическая суть этих понятий определилась лишь в новой теории...
Вторая лекция аксиомы единства iconЭволюция теорий атома канарёв Ф. М. Четвёртая лекция аксиомы Единства Анонс
Анонс. Формирование научных представлений о структуре атомов – наиболее сложный процесс познания микромира
Вторая лекция аксиомы единства iconСедьмая новая лекция аксиомы единства
Анонс. Научные достижения человечества по формированию, передаче и приёму электронной информации – фантастика, полученная, главным...
Вторая лекция аксиомы единства iconЛекция аксиомы единства канарёв Ф. М. kanarevfm
Анонс. В 1831 году английский физик Майкл Фарадей открыл закон электромагнитной индукции – экспериментальный фундамент существующей...
Вторая лекция аксиомы единства iconKanphil@mail ru Седьмая лекция аксиомы Единства Анонс
Анонс. В 1831 году английский физик Майкл Фарадей открыл закон электромагнитной индукции – экспериментальный фундамент существующей...
Вторая лекция аксиомы единства iconЛекция аксиомы единства канарёв Ф. М. kanarevfm
Описание движения тел он начал с равномерного движения, которое всегда является следствием начального ускоренного движения. В результате...
Вторая лекция аксиомы единства iconЛекция аксиомы единства канарёв Ф. М
Природы начал рождать элементарные частицы и формировать материальный мир, состоящий из протонов, нейтронов и электронов, которые...

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
litcey.ru
Главная страница