Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов




Скачать 231.99 Kb.
НазваниеРабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов
Дата публикации24.02.2013
Размер231.99 Kb.
ТипРабочая программа
litcey.ru > Математика > Рабочая программа
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов:

  1. Федеральный компонент государственного стандарта среднего (полного) общего образования на базовом уровне

  2. Примерная программа среднего (полного) общего образования по математике на профильном уровне, рекомендованная Министерством образования и науки РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008

  3. Авторская программа: Программы. Математика. 5 – 6 классы. Алгебра 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы (профильный уровень) / авт.- сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и доп. – М.: Мнемозина, 2009. – 63 с.

Данная программа рассчитана на 345 учебных часов на два года обучения (175 часов в 10 классе и 170 часов в 11 классе). В учебном плане для изучения математики отводится 7 часов в неделю, из которых предусмотрено 5 часов в неделю на изучение курса алгебры и начал математического анализа и 2 часа на изучение геометрии. Для обучения алгебре и началам математического анализа в 10 – 11 классах выбрана содержательная линия А.Г. Мордковича. Данное количество часов соответствует второму варианту авторской программы.

Общая характеристика учебного предмета

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

  • систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

  • развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

  • систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

  • расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

  • совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

  • формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Задачи III ступени образования:

Задачами среднего (полного) общего образования являются развитие интереса к познанию и творческих способностей обучающегося, формирование навыков самостоятельной учебной деятельности на основе дифференциации обучения. В дополнение к обязательным предметам вводятся предметы по выбору самих обучающихся в целях реализации интересов, способностей и возможностей личности.

Цель курса:

Способствовать формированию математической культуры, формированию интелектуально-грамотной личности, способной самостоятельно получать знания, осмысленно выбирать профессию и специальность в соответствии с заявленным профилем образования в условиях модернизации системы образования РФ.

Изучение математики в 10-11 классах на профильном уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

  • развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

  • воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Требования к уровню математической подготовки

В результате изучения математики на профильном уровне в старшей школе ученик должен

Знать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;

  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;

  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;

  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;

  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;

  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;

  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;

  • вероятностных характер различных процессов и закономерностей окружающего мира.
^

Числовые и буквенные выражения


Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;

  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;

  • выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;

  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

^ Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.
^

Функции и графики


Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций, выполнять преобразования графиков;

  • описывать по графику и по формуле поведение и свойства функций;

  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.
^

Начала математического анализа


Уметь

  • находить сумму бесконечно убывающей геометрической прогрессии;

  • вычислять производные и первообразные элементарных функций, применяя правила вычисления производных и первообразных, используя справочные материалы;

  • исследовать функции и строить их графики с помощью производной,;

  • решать задачи с применением уравнения касательной к графику функции;

  • решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;

  • вычислять площадь криволинейной трапеции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • решения геометрических, физических, экономических и других прикладных задач, в том числе задач на наибольшие и наименьшие значения с применением аппарата математического анализа.
^

Уравнения и неравенства


Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;

  • доказывать несложные неравенства;

  • решать текстовые задачи с помощью составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;

  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

  • находить приближенные решения уравнений и их систем, используя графический метод;

  • решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной.

^ Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • построения и исследования простейших математических моделей.
^

Элементы комбинаторики, статистики и теории вероятностей


Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;

  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

^ Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для анализа информации статистического характера.

Общеучебные умения, навыки и способы деятельности

  • В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

  • проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

  • решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

  • планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

  • самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения.

В данном курсе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением компетентностно-ориентированных заданий, ИКТ.

Учебно – тематический план

п/п

Тема

^ Количество часов

В том числе

Контрольные работы

10 кл

11 кл

10 кл

11 кл

^ Алгебра и начала математического анализа

1

Числовые и буквенные выражения

28

45

2

2

2

Тригонометрия

34

-

2




3

Функции

34

15

1

3

4

Начала математического анализа

35

15

2

1

5

Уравнения и неравенства

12

58

1

2

6

Элементы комбинаторики, статистики и теории вероятностей

10

11

1




7

Резерв

22

26

3

3




Итого

175

170

12

11

Сопоставление содержания программы по предмету с примерной программой федерального базисного учебного плана.

В рабочей программе увеличено количество часов, отводимое на изучение математики по сравнению с примерной программой по предмету за счет школьного компонента в связи с целесообразностью более детального изучения отдельных разделов. Добавлены часы на изучение раздела «Тригонометрия» и «Начала математического анализа» (в части «Производная»). Считаю целесообразным изучение темы «Комплексные числа» после темы «Производная» для целостного восприятия учащимися представления о множестве чисел.

Содержание тем учебного курса

п/п

Тема

Содержание

^ Алгебра и начала математического анализа

1

Числовые и буквенные выражения

Делимость целых чисел. Деление с остатком. Сравнения. Решение задач с целочисленными неизвестными.

Комплексные числа. Геометрическая интерпретация комплексных чисел. Действительная и мнимая часть, модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы записи комплексных чисел. Арифметические действия над комплексными числами в разных формах записи. Комплексно сопряженные числа. Возведение в натуральную степень (формула Муавра). Основная теорема алгебры.

Многочлены от одной переменной. Делимость многочленов. Деление многочленов с остатком. Рациональные корни многочленов с целыми коэффициентами. Решение целых алгебраических уравнений. Схема Горнера. Теорема Безу. Число корней многочлена. Многочлены от двух переменных. Формулы сокращенного умножения для старших степеней. Бином Ньютона. Многочлены от нескольких переменных, симметрические многочлены.

Корень степени и его свойства. Степень с рациональным показателем и ее свойства. Понятие о степени с действительным показателем. Свойства степени с действительным показателем.

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени; переход к новому основанию. Десятичный и натуральный логарифмы, число е.

Преобразования выражений, включающих арифметические операции, а также операции возведения в степень и логарифмирования.

2

Тригонометрия

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла. Синус, косинус, тангенс и котангенс числа. Основные тригонометрические тождества. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Формулы половинного угла. Преобразования суммы тригонометрических функций в произведение и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразования тригонометрических выражений.

Простейшие тригонометрические уравнения и неравенства.

Арксинус, арккосинус, арктангенс, арккотангенс.

3

Функции

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами. Свойства функций: монотонность, четность и нечетность, периодичность, ограниченность. Промежутки возрастания и убывания, наибольшее и наименьшее значения, точки экстремума (локального максимума и минимума). Выпуклость функции. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной.

Степенная функция с натуральным показателем, её свойства и график. Вертикальные и горизонтальные асимптоты графиков. Графики дробно-линейных функций.

Тригонометрические функции, их свойства и графики, периодичность, основной период. Обратные тригонометрические функции, их свойства и графики.

Показательная функция (экспонента), её свойства и график.

Логарифмическая функция, её свойства и график.

Преобразования графиков: параллельный перенос, симметрия относительно осей координат и симметрия относительно начала координат, симметрия относительно прямой , растяжение и сжатие вдоль осей координат.

4

Начала математического анализа

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Теоремы о пределах последовательностей. Переход к пределам в неравенствах.

Понятие о непрерывности функции. Основные теоремы о непрерывных функциях.

Понятие о пределе функции в точке. Поведение функций на бесконечности. Асимптоты.

Понятие о производной функции, физический и геометрический смысл производной. Уравнение касательной к графику функции. Производные суммы, разности, произведения и частного. Производные основных элементарных функций. Производные сложной и обратной функций. Вторая производная. Применение производной к исследованию функций и построению графиков. Использование производных при решении уравнений и неравенств, при решении текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений.

Площадь криволинейной трапеции. Понятие об определенном интеграле. Первообразная. Первообразные элементарных функций. Правила вычисления первообразных. Формула Ньютона-Лейбница.

Примеры использования производной для нахождения наилучшего решения в прикладных задачах. Нахождение скорости для процесса, заданного формулой или графиком. Примеры применения интеграла в физике и геометрии. Вторая производная и ее физический смысл.

5

Уравнения и неравенства

Решение рациональных, показательных, логарифмических уравнений и неравенств. Решение иррациональных и тригонометрических уравнений и неравенств.

Основные приемы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных. Равносильность уравнений, неравенств, систем. Решение систем уравнений с двумя неизвестными простейших типов. Решение систем неравенств с одной переменной.

Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

Использование свойств и графиков функций при решении уравнений и неравенств. Метод интервалов. Изображение на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учет реальных ограничений.

6

Элементы комбинаторики, статистики и теории вероятностей

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.

7

Повторение

Повторение курса алгебры и начал математического анализа 10-11 классов.

Контроль уровня обученности



п/п

Дата

Тема контрольной работы

^ Вид контроля

10 класс

1

2 неделя

Входная контрольная работа №1

«Повторение курса алгебры 7 – 9 классов»

^ Входной административный контроль

2

4 неделя

Контрольная работа №2

«Действительные числа»

^ Текущий контроль

3

7 неделя

Контрольная работа №3

«Числовые функции»

Текущий контроль

4

11 неделя

^ Контрольная работа №4

«Тригонометрические функции»

Текущий контроль

5

15 неделя

^ Контрольная работа №5

«Решение тригонометрических уравнений»

Текущий контроль

6

16 неделя

^ Промежуточная административная контрольная работа №6

Промежуточный административный контроль

7

21 неделя

^ Контрольная работа №7 «Преобразование тригонометрических выражений»

Текущий контроль

8

25 неделя

^ Контрольная работа №8

«Вычисление производных»

Текущий контроль

9

28 неделя

^ Контрольная работа №9

«Применение производной»

Текущий контроль

10

30 неделя

^ Контрольная работа №10

«Комплексные числа»

Текущий контроль

11

32 неделя

^ Контрольная работа №11

«Комбинаторика и вероятность»

Текущий контроль

12

34 неделя

^ Итоговая административная контрольная работа №12 (2 часа)

Итоговый контроль

11 класс

1

2 неделя

^ Входная контрольная работа №1 «Повторение курса алгебры и начал математического анализа 10 класса»

Входной административный контроль

2

4 неделя

^ Контрольная работа №2

«Многочлены»

Текущий контроль

3

8 неделя

Контрольная работа №3

«Степени и корни»

^ Текущий контроль

4

10 неделя

Контрольная работа №4

«Степенные функции»

^ Текущий контроль

5

14 неделя

Контрольная работа №5

«Показательная функция»

^ Текущий контроль

6

16 неделя

Промежуточная административная контрольная работа №6

Промежуточный административный контроль

7

18 неделя

^ Контрольная работа №7

«Логарифмическая функция»

Текущий контроль

8

20 неделя

^ Контрольная работа №8

«Первообразная и интеграл»

Текущий контроль

9

26 неделя

^ Контрольная работа №9

«Уравнения и неравенства»

Текущий контроль

10

29 неделя

^ Контрольная работа №10

«Системы уравнений и неравенств»

Текущий контроль

11

33 неделя

^ Итоговая административная контрольная работа №11 (2 часа)

Итоговый контроль

Формы контроля

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме математических диктантов, контрольных и самостоятельных работ.

текущий: самостоятельная работа, проверочная работа, математический диктант, тест, опрос;

тематический: зачет, контрольная работа.

Контроль уровня знаний

Система контролирующих материалов, позволяющих оценить уровень и качество ЗУН обучающихся на входном, текущем и итоговом этапах изучения предмета включает в себя сборники тестовых и текстовых заданий

для 10 класса:

  1. Алгебра и начала анализа. Контрольные работы для 10 класса общеобразовательных учреждений (профильный уровень) / В.И. Глизбург; под ред. А.Г. Мордковича. – М.: Мнемозина, 2007. – 62 с.: ил.

  2. Алгебра и начала анализа. 10 кл.: Самостоятельные работы: Учеб. пособие для общеобразоват. учреждений / Л.А. Александрова; под ред. А.Г. Мордковича. – М.: Мнемозина, 2005. – 135 с.

  3. Алгебра и начала анализа. 10 – 11 кл.: Контрольные работы для общеобразоват. учреждений: учеб. пособие / А.Г. Мордковича, Е.Е. Тульчинская. – 5-е изд. – М.: Мнемозина, 2007. – 62 с.

  4. Алгебра и начала математического анализа. 10 класс. Контрольные работы для учащихся общеобразовательных учреждений (базовый уровень) / В.И. Глизбург; под ред. А.Г. Мордковича. – М.: Мнемозина, 2009. – 39 с.

  5. Алгебра и начала анализа. 10 – 11 кл.: Тематические тесты и зачеты для общеобразоват. учреждений / Л.О. Денищева, Т.А Корешкова; под ред. А.Г. Мордковича. – 2-е изд., испр. и доп. – М.: Мнемозина, 2005. – 102 с.

для 11 класса:

  1. Алгебра и начала анализа. Контрольные работы для 11 класса общеобразовательных учреждений (профильный уровень) / В.И. Глизбург; под ред. А.Г. Мордковича. – М.: Мнемозина, 2008. – 55 с.

  2. Алгебра и начала анализа. 11 кл.: Самостоятельные работы: Учеб. пособие для общеобразоват. учреждений / Л.А. Александрова; под ред. А.Г. Мордковича. – 4-е изд., испр. и доп. – М.: Мнемозина, 2009. – 100 с.

  3. Алгебра и начала анализа. 10 – 11 кл.: Контрольные работы для общеобразоват. учреждений: учеб. пособие / А.Г. Мордковича, Е.Е. Тульчинская. – 5-е изд. – М.: Мнемозина, 2007. – 62 с.

  4. Алгебра и начала математического анализа. 11 класс. Контрольные работы для учащихся общеобразовательных учреждений (базовый уровень) / В.И. Глизбург; под ред. А.Г. Мордковича. – М.: Мнемозина, 2009. – 32 с.

  5. Алгебра и начала анализа. 10 – 11 кл.: Тематические тесты и зачеты для общеобразоват. учреждений / Л.О. Денищева, Т.А Корешкова; под ред. А.Г. Мордковича. – 2-е изд., испр. и доп. – М.: Мнемозина, 2005. – 102 с.

Учебно-методическое обеспечение

^ Наименование предмета

Основная литература

(учебники)

Учебные и справочные пособия:

^ Учебно-методическая литература:

Медиаресурсы

10 класс

Алгебра

и начала анализа

1. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. 4-е изд., доп. – М.: Мнемозина, 2007

2. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 2: задачник для общеобразовательных учреждений (профильный уровень) / [А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. 4-е изд., испр. – М.: Мнемозина, 2007

1. Программы. Математика. 5 – 6 классы. Алгебра 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и доп. – М.: Мнемозина, 2009

1. Алгебра и начала анализа. 10 класс (профильный уровень): методическое пособие для учителя / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2008

1. Учебное пособие «Уроки алгебры Кирилла и Мефодия

10-11 классы»

2. Учебное пособие «1С: Математический конструктор 2.0»

3. Учебное пособие «Открытая математика. Алгебра»

4. Учебное пособие «Открытая математика. Функции и графики»

11 класс

Алгебра

и начала анализа

1. Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 1. Учебник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. 2-е изд., стер. – М.: Мнемозина, 2008

2. Алгебра и начала анализа. 11 класс. В 2 ч. Ч. 2. Задачник для общеобразовательных учреждений (профильный уровень) / [А.Г. Мордкович и др.]; под ред. А.Г. Мордковича. 2-е изд., доп. – М.: Мнемозина, 2008

1. Программы. Математика. 5 – 6 классы. Алгебра 7 – 9 классы. Алгебра и начала математического анализа. 10 – 11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и доп. – М.: Мнемозина, 2009

1. Алгебра и начала анализа. 11 класс (профильный уровень): методическое пособие для учителя / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2010

1. Учебное пособие «Уроки алгебры Кирилла и Мефодия

10-11 классы»

2. Учебное пособие «1С: Математический конструктор 2.0»

3. Учебное пособие «Открытая математика. Алгебра»

4. Учебное пособие «Открытая математика. Функции и графики»

Список литературы

  1. Федеральный компонент государственного стандарта основного общего образования по математике / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008. – 128 с.

  2. Примерная программа основного общего образования по математике, рекомендованная Министерством образования и науки РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008. – 128 с.

  3. Государственный образовательный стандарт общего образования / Официальные документы в образовании. – 2004. №24-25.

  4. Закон Российской Федерации «Об образовании» / Образование в документах и комментариях. – М.: АСТ «Астрель» Профиздат. – 2005. 64 с.

  5. Методические рекомендации по разработке и утверждению рабочих программ учебных дисциплин базисного учебного плана образовательного учреждения / – Издательство: Учебно-методический центр, г. Серпухов, 2008. – 10 с.

Похожие:

Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconРабочая программа по математике для 10-11 классов (базовый уровень)...
Федеральный компонент государственного стандарта среднего (полного) общего образования на базовом уровне РФ / Сборник нормативных...
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconРабочая программа по математике составлена на основе федерального...
Данная рабочая программа ориентирована на учащихся 10-11 классов и реализуется на основе следующих документов
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconПояснительная записка данная рабочая программа по геометрии для 10-11...
Федеральный компонент государственного стандарта среднего (полного) общего образования на базовом уровне
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconОбразовательная программа мбоу «сош №59»
Данная рабочая программа по геометрии ориентирована на учащихся 9 классов и реализуется на основе следующих документов
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconРабочая программа по химии 10-11 класс (уровень профильный)
Планирование составлено на основе Программы курса химии для 10 11 классов общеобразовательных учреждений по химии, профильный уровень...
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconРабочая программа по математике для обучающихся в 10 классе (базовый уровень)
Данная учебная программа ориентирована на обучающихся в 10 классе и реализуется на основе следующих документов
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconРабочая программа по физике для обучающихся в 10 классе (базовый уровень)
Данная учебная программа ориентирована на обучающихся в 10 классе и реализуется на основе следующих документов
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconРабочая программа по физике для обучающихся в 11 классе (базовый уровень)
Данная учебная программа ориентирована на обучающихся в 11 классе и реализуется на основе следующих документов
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconУчебному плану для 1-3 классов
Учебный план школы для 1-а, 1-б, 1-в, 2-а, 2-б, 2-в, 3-а, 3-б, 3-в, 3-г классов, в которых реализуется программа начального общего...
Рабочая программа по алгебре и математическому анализу для 10-11 классов (профильный уровень) реализуется на основе следующих документов iconПояснительная записка данная рабочая программа по алгебре ориентирована...
Федеральный компонент государственного стандарта основного общего образования по математике

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
litcey.ru
Главная страница