Методические указания к лабораторным работам по курсу «Физические основы получения информации»




НазваниеМетодические указания к лабораторным работам по курсу «Физические основы получения информации»
страница1/5
Дата публикации24.05.2013
Размер0.5 Mb.
ТипМетодические указания
litcey.ru > Физика > Методические указания
  1   2   3   4   5


Министерство образования Российской Федерации

Государственное бюджетное образовательное учреждение

«Алтайский государственный технический университет

им. И.И. Ползунова»

Е.М. Патрушев, В.Н. Седалищев

Методические указания к лабораторным работам по курсу

«Физические основы получения информации»

для студентов направления 200100

«Приборостроение»
Часть 1
ФОПИ-1

Барнаул 2012г.

УДК 53.08(075.5)


Патрушев Е.М., Седалищев В.Н. Методические указания к лабораторным работам по курсу «Физические основы получения информации» для студентов направления 200100 «Приборостроение», часть 1/АлтГТУ им. И.И.Ползунова. - Барнаул, 2012.- 56с.

Методические указания содержат краткие теоретические сведения, задания к лабораторным работам, требования к оформлению отчетов.

Рассмотрены и одобрены

на заседании кафедры

«Информационные технологии»

Протокол №1 от 1 ноября 2012г.


Рецензент: к.т.н., доцент Лукьянов В.Г.

^ Лабораторная работа №1

«Исследование термоэлектрического эффекта»
Физические основы теории термопар

В основу способа измерения температур с помощью термопар положены термоэлектрические явления, открытые Зеебеком в 1821 г. Применение этих явлений к измерению температур основано на существовании определенной зависимости между термоэлектродвижущей силой (термо-ЭДС), устанавливающейся в цепи, составленной из однородных проводников, и температурами мест их соединения. Если взять цепь (рисунок 1.1), составленную из двух разнородных проводников А и В (например, меди и платины), то при подогреве спая 1 в цепи появляется электрический ток, который в более нагретом спае 1 направлен от платины В к меди А, а в холодном спае 2 – от меди к платине. При подогреве спая 2 ток получает обратное направление. Такие токи называют термоэлектрическими токами, а дающие их приборы – термопарами и термобатареями. Электродвижущие силы, обусловленные неодинаковыми потенциалами в спаях, имеющих разные температуры называются термо–ЭДС



Рисунок 1.1 – Термоэлектрическая цепь из двух проводников
Для объяснения механизма возникновения термо-ЭДС воспользуемся электронной теорией, которая основывается на представление о наличии в металлах свободных электронов. В различных металлах плотность свободных электронов (число электронов в единице объёма) неодинаково и поэтому электроны, которые можно уподобить свободному газу, заполняющему межмолекулярное пространство в металле, будут находиться под неодинаковым давлением. В следствии этого в местах соприкосновения двух разнородных металлов, например, в спае 1 (рисунок 1.1), электроны будут диффундировать из металла A в металл B в большем количестве, чем обратно из металла В в металл А, и, как следствие, металл А будет заряжаться положительно, а металл В – отрицательно. Возникающее при этом в месте соприкосновения электрическое поле будет препятствовать этой диффузии, и когда скорость диффузионного перехода электронов станет равна скорости их обратного перехода под влиянием установившегося определенного поля, наступит состояние подвижного равновесия. При таком состоянии между металлами А и В возникает некоторая разность потенциалов. Так как давление электронного газа зависит также и от температуры мест соединения проводников, то ЭДС, возникающие в спаях 1 и 2 будут различны.

Кроме того, термоэлектрический ток возникает и в замкнутом однородном проводнике, если он неравномерно нагрет, так как в каждом однородном проводнике, концы которого имеют разные температуры, появляется разность потенциалов.

Учитывая оба фактора, определяющих термо-э.д.с ЕАВ (t, t0) в цепи, показанной на рисунке 1.1, можно написать:

(1.1)

В уравнении (1.1) приняты следующие обозначения: через е обозначены результирующие ЭДС, определяемые суммарным эффектом, т.е. ЭДС, возникающими в местах соприкосновения проводников, и ЭДС, обусловленными разностью температур концов проводников А и В;через индексы АВ внизу символа обозначены проводники, между которыми результирующая ЭДС имеет место, причем порядок написания индексов указывает, при переходе от которого проводника к другому учитывается эта ЭДС Очевидно, что при перемене порядка индексов необходимо перед символом е изменить знак.

На основании этого, уравнение (1.1) мы можем представить в следующем виде:

(1.2)

т.е. термо-ЭДС наблюдаемая в цепи из двух разнородных проводников, места спаев которых имеют разные температуры, равна разности результирующих ЭДС. Термо-ЭДС, которую один проводник приобретает по отношению к другому, считают положительной, если она в холодном спае направлена на от первого ко второму проводнику (например, медь по отношению к платине имеет положительную термо-ЭДС).

Из уравнения (1.2) непосредственно следует, что термо-ЭДС ЕАВ(t,t0) есть разность функций температур t и t0, но отнюдь не следует считать, что ЕАВ (t,t0) есть функция разности температур t и t0 так как для того, чтобы сделать последнее ошибочное заключение, необходимо считать линейную зависимость ЕАВ (t,t0). Для такого предположения никаких оснований нет, так как эксперимент показывает, что в действительности оно никогда не оправдывается.

Обозначая результирующую ЭДС еAB в уравнении (1.2) через f(t), мы можем написать формулу, выражающую в общем виде зависимость термо-ЭДС, возникающую в цепи из двух разнородных проводников А и В (рисунок 1.2), от температуры t и t0 мест их соединения

(1.3)

Поддерживая температуру одного из спаев термопары (цепи) постоянной, например, полагая t0=const и вводя обозначения f(t0)=C, приходим к зависимости

(1.4)

Если зависимость, выраженная уравнением 1.4, известна из кривой, таблицы или уравнения, составленного на основании эксперимента, т.е. путём градуировки термопары, то измерение неизвестной температуры t сводится к измерению EAB (t,t0).

При этом предполагается, что температура t0 остается неизменной, так как нарушение постоянства этой температуры влечет за собой недействительность уравнения (1.4) вследствие того, что с изменением t0 изменяется постоянная С.

Термо-ЭДС, развиваемая термопарой, невелика (0.01÷0.06 мВ на 1ºС), но все же достаточна для того, чтобы произвести ее измерение с достаточной для практических целей точностью с помощью пирометрического милливольтметра или потенциометра.

Для присоединения милливольтметра или потенциометра следует либо разорвать цепь термопары в спае 2 (рисунок 1.1), либо разорвать один из проводников (термоэлектродов).


Рисунок 1.2 – Включение электроизмерительного прибора в спай термопары



Рисунок 1.3 – Включение электроизмерительного прибора в термоэлектрод термопары
В первом случае (рисунок 1.2) у термопары будет три спая: один горячий 1 и два 2 и 3 холодные, последние должны иметь постоянную температуру t0, а во втором случае (рисунок 1.3) у термопары окажется четыре спая: один горячий 1, один холодный 2 и два нейтральных 3 и 4. Спаи 3 и 4 должны иметь одну и ту же температуру t1.

Несмотря на внешнее отличие схем (рисунки 1.2 и 1.3) от схемы (рисунок 1.1), термо-ЭДС, развиваемая термопарами, в обоих случаях будет одинакова, если одинаковы будут температуры горячих и холодных спаев, так как термо-ЭДС термопары не изменяется от введения в её цепь третьего проводника, если температуры концов этого проводника одинаковы.


Рисунок 1.4 – Термоэлектрическая цепь из трех проводников
На основании закона Вольта (закона последовательных контактов) в замкнутой цепи, составленной из двух или любого числа разнородных проводников A, B, C,….,N в том случае, когда температуры мест их соединений одинаковы и отсутствуют посторонние ЭДС, нельзя получить тока, так как при обходе этой цепи мы опять придём к исходному проводнику и вследствие этого сумма ЭДС этой цепи будет равна нулю. Этот закон является прямым следствием второго закона термодинамики, так как, если бы сумма ЭДС в подобной цепи не равнялась нулю, то в цепи был бы ток. Если бы в цепи имелся ток, то часть цепи стала бы нагреваться, а другая – охлаждаться, что означало бы, что тепло переходит от низшей температуры к высшей без приложения внешней работы. Это противоречит второму закону термодинамики, и мы делаем вывод, что сумма ЭДС в такой цепи равна нулю.

Для случая трех разнородных проводников (рисунок 1.4), спаи которых имеют одну и ту же температуру t, будем иметь:
(1.5)
т.е. сумма ЭДС в замкнутой цепи из разнородных металлических проводников при одной и той же температуре мест их соединения равна нулю. Из этого так же следует, что
(1.6)

т.е. если известна ЭДС двух металлов по отношению к третьему, то этим самым определяется и ЭДС между первыми двумя.



Рисунок 1.5 – Схема термопары с включенным в ее спай проводником С




Рисунок 1.6 – Схема термопары с включенным в ее термоэлектрод проводником С

Далее рассмотрим цепь (рисунок 1.5) из трёх проводников А, В, и С, у которой температуры спаев 2 и 3 одинаковы и равны t0 определим термо-ЭДС Е для этой цепи в соответствии с принятыми условиями:

(1.7)

Принимая во внимание уравнение (1.5), из которого вытекает, что



и подставляя это значение в уравнение (1.7), получим:



т.е. уравнение полностью совпадает с уравнением (1.2).

Рассмотрим теперь цепь, изображённую на рисунке 1.6. Полагая, что температуры спаев 3 и 4 равны между собой, будем иметь:

(1.8)

Полученное уравнение легко приводится к виду, полностью совпадающему с уравнением (1.2), если учесть, что и . Таким образом, уравнение (1.8) принимает вид:

.

Из этого следует, что термо-ЭДС термопары не изменяется от введения в её цепь третьего проводника, если температуры концов этого проводника одинаковы. Это положение легко распространить на цепь, составленную из любого числа проводников.

Таким образом, схемы (рисунки 1.2 и 1.3), при равенстве температур спаев 2 и 3 (рисунок 1.2) и 3 и 4 (рисунок 1.3) проводника С, термоэлектрически эквивалентны со схемой (рисунок 1.1), при этом в случае схемы (рисунок 1.3) абсолютное значение температуры t1 никакой роли не играет.

Из сказанного выше следует, что способ изготовления спая (сваркой, спайкой и т.д.) на величину термо-ЭДС не влияет, если только размеры спая таковы, что температура его во всех точках одинакова. Положение это верно, и для всех вообще токоведущих элементов термоэлектрической цепи.

Нарушение же равенства температур, концов третьего проводника, включаемого в цепь термопары, вызывает появление паразитной термо-ЭДС, которая будет зависеть от свойства проводника и от температуры мест его присоединения.

Предположим, что в схеме (рисунок 1.5) температура спая 2 проводника С с проводником А не равна температуре t0 спая 3 и имеет отличное от t0 значение t0', причем t0< t0'. В этом случае термо-ЭДСв цепи будет равна:

(1.9)

Вычитая из уравнения (1.2) уравнение (1.9), получим:

(1.10)

или, воспользовавшись уравнением (1.6), получим:

(1.11)

В этом уравнении правая часть представляет собой термо-ЭДС EAC(t0',t0), развиваемую термопарой, составленной из проводника С и термоэлектрода А, концы которого имеют температуры t0' и t0.

Аналогично предыдущему предположим, что в схеме рис.1.6 температура спая 4 проводника С с проводником В не равна температуре t1 спая 3 и имеет значение t1'(t1< t1'). В этом случае термо-ЭДС будет равна:

. (1.12)

Вычитывая из уравнения (1.2) уравнение (1.12), получим:

(1.13)

Из уравнения (1.11) и (1.13) видно, что при неравенстве температур холодных спаев (в случае схемы (рисунок 1.5)) или нейтральных (в случае схемы (рисунок 1.6)) термо-ЭДС термопары уменьшается на величину термо-ЭДС паразитной термопары, составленной из проводника С в паре с термоэлектродом А для схемы (рисунок 1.5) и с проводником В для схемы (рисунок 1.6).

Из этого следует, что в цепи пирометра нежелательно употреблять проводники, значительно различающиеся термоэлектрически, даже там, где постоянство температур относительно обеспечено. Например, для изготовления добавочных и регулировочных сопротивлений следует избегать применения константана, дающего высокую термо-ЭДС с медью, и рекомендуется применять только манганин.
Практическая часть

Задание: Исследовать зависимость ЭДС термопары от температуры при нагревании и остывании
Цель работы: исследовать термоэлектрические явления цепи, состоящей из разнородных проводников.
Приборы и оборудование: термопара градуировки ХА (хромель-алюмель), термопара градуировки ХК (хромель-копель), нагревательный элемент, лабораторный автотрансформатор (ЛАТР), вольтметр В7-21 или В7-16А, соединительные проводники, секундомер.

Порядок выполнения работы:

  1. Подключить нагреватель к лабораторному автотрансформатору (ЛАТРу). (Провод обозначен «Нагрев термопары»)

  2. Подключить термопару ХК или ХА к вольтметру В7-21 или В7-16А соблюдая полярность.

  3. Включить ЛАТР в сеть 220В.




Рисунок 1.7 – Схема лабораторной установки


  1. С помощью регулятора напряжения и вольтметра, установленных на ЛАТРе, задать напряжение нагрева UН=50В.

  2. С интервалом в 1 мин произвести 8 измерений ЭДС термопары. Данные занести в таблицу 1.1.

  3. Повторить пункт 5 при UН=100В и UН=150В.

  4. Установить UН=0В и с интервалом в 1 мин выполнить 12 измерений термо-ЭДС, данные занести в таблицу 1.2.


Таблица 1.1 – Зависимость термо-ЭДС термопары при нагревании

UН

t,мин

Е,мВ











Таблица 1.2 – Зависимость термо-ЭДС термопары при остывании

t,мин

Е,мВ

Т,ºС













  1. Используя градуировочную таблицу (ГОСТ 3044-77) (таблица встроена в стенд) определить значения температур при остывании термопары, внести эти значения в таблицу 1.2. (Поскольку градуировочная таблица содержит значения с шагом в 5°C, для определения температуры по известной ЭДС необходимо использовать линейную интерполяцию, т.е. считать, что промежуточные значения находятся по линейному закону)

  2. Построить график зависимости термо-ЭДС термопары от времени при нагревании.

  3. Построить график зависимости температуры термопары от времени при остывании.

  4. Определить постоянную времени τ переходного процесса при остывании. Постоянная времени переходного процесса при остывании показывает время, за которое разность температур термопары и окружающей среды уменьшится в 2.71828 раз. Для этого представляем зависимость температуры от времени Т(t) следующим образом:

,

где

Т0 – температура в начале остывания;

t – время;

t0 – момент времени в начале остывания, будем считать t0=0.

Прологарифмируем это выражение:



Полученное выражение продифференцируем и преобразуем:

,

.

В результат получим выражение для среднего значения τ.
В случае, если расчетная часть выполняется без использования среды MathCad, постоянную времени можно вычислить приближенно по двум значениям температуры: в начале и в конце остывания. Если задаться исходным уравнением и подставить в него значения для конца процесса остывания, то можно получить постоянную времени.

;

,

где

ТК – температура в конце остывания;

tК – момент времени конца остывания.

  1. Определить время запаздывания термопары tЗ=3τ.




  1. С помощью Microsoft Word и MathSoft MathCad выполнить отчет по лабораторной работе, который должен включать:

  • титульный лист

  • теоретическую часть,

  • задание, цель исследования, приборы и оборудование

  • порядок проведения лабораторной работы, в который помещен расчет и результаты, выполненные в MathCad

  • выводы по работе

Отчет сдается в распечатанном виде.
^ Пример выполнения расчетной части в среде MathCad

(не является примером выполнения отчета по лабораторной работе)

Экспериментальные данные приведены в таблицах N1 –при UН=50В, N2 –при UН=100В, N3 –при UН=150В, H - при остывании (колонка 0 содержит время в минутах, колонка 1 - термо-ЭДС в милливольтах). Матрица G содержит градуировочную таблицу ХА (колонка 0 содержит температуру в градусах Цельсия, колонка 1 – термо-ЭДС при этой температуре).







Рисунок 1 – График зависимости термо-ЭДС термопары от времени нагревания
Выполним линейную интерполяцию для градуировочной таблицы, получи функцию m1(x). Ниже Т – обозначает температуру, Е – ЭДС, t – время.







В колонку 2 таблицы остывания поместим рассчитанные значения температуры.





Рисунок 2 – Зависимость температуры термопары от времени остывания

Для вычисления постоянной времени термопары необходимо выполнить кубическую сплайн-интерполяцию полученной зависимости температуры термопары от времени остывания (получим функцию m2(x) )







Получим функцию для постоянной времени. Это будет величина, зависящая от времени (в данном случае это tau(t) )

Найдем среднее значение постоянной времени. Это будет площадь криволинейной трапеции, деленная на величину интервала интегрирования. (Функция last выдает номер последнего элемента в таблице)





Определим время запаздывания

t3:=3·τ

t3=12.044 мин

Контрольные вопросы:

  1. Почему в месте контакта разнородных проводников возникает ЭДС?

  2. Почему при выполнении измерений еще до начала нагрева термопары, вольтметр показывал 0В, хотя температура в помещении была 10-20ºС?

  3. Какими соединительными проводниками выполняется связь термопары и измерительного прибора?

  4. При выполнении исследований для соединения термопары и вольтметра использовались обычные проводники. Привело ли это к погрешностям?

  5. Будут ли зависеть показания термоэлектрического термометра, если термоэлектроды, из которых он изготовлен, имеют разную толщину?, разную длину?
  1   2   3   4   5

Похожие:

Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к лабораторным работам по курсу «Физические основы получения информации»
Патрушев Е. М., Патрушева Т. В., Седалищев В. Н. Методические указания к лабораторным работам по курсу «Физические основы получения...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к практическим занятиям по курсу «Физические основы получения информации»
Патрушев Е. М., Патрушева Т. В методические указания к практическим занятиям по курсу «Физические основы получения информации» для...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconВ. Н. Седалищев физические основы получения информации
Седалищев В. Н., Физические основы получения информации: учебное пособие/Алт гос техн ун-т им. И. И. Ползунова. – Барнаул: Изд-во...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к лабораторным работам по курсу “Системы передачи...
Исследование протоколов сетевого уровня ip-сетей с помощью анализатора протоколов
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к выполнению лабораторных работ Омск 2006
П. С. Гладкий, Е. А. Костюшина, М. Е. Соколов, Проектирование баз данных: Методические указания к лабораторным работам. Омск: Издательство:...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к лабораторным работам по дисциплине «Метрология,...
Методические указания предназначены для выполнения лабораторных работ по дисциплине «Метрология, стандартизация и сертификация» студентами,...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к лабораторным работам по дисциплине «Метрологическое...
Методические указания предназначены для выполнения лабораторных работ по дисциплине «Метрологическое обеспечение научного эксперимента»...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания к лабораторным работам по дисциплине «Пьезорезонансные...
Методические указания предназначены для выполнения лабораторных работ по дисциплине «Пьезорезонансные нелинейные измерительные преобразователи»...
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания по лабораторным занятиям По дисциплине
Методические указания рассмотрены и утверждены на заседании умкс и рекомендованы к изданию
Методические указания к лабораторным работам по курсу «Физические основы получения информации» iconМетодические указания Новосибирск 2003 Государственный комитет Российской Федерации
Методические указания предназначены для использования в процессе лабораторного практикума по курсу «Основы теории массового обслуживания»...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
litcey.ru
Главная страница