Скачать 215.91 Kb.
|
А.И. Демков ВОЗДЕЙСТВИЕ НЕФТЕПРОДУКТОВ НА ВОДНЫЕ ЭКОСИСТЕМЫ, ИХ СВОЙСТВА В статье приведены общие сведения по нефтепродуктам, их токсикологическим свойствам. Приводится вывод размерностей между млн-1 и мг/л для воды. Ключевые слова: нефтепродукты, токсикологические свойства, размерность, ПДК Согласно определению, данному комиссией по унификации методов анализов природных и сточных вод при Государственном комитете по науке и технике Совета Министров СССР, «нефтепродуктами» при анализе вод следует считать неполярные и малополярные соединения, растворимые в гексане, т.е. углеводороды алифатические, алициклические, ароматические. Данное определение, в основном, совпадает с определением данное Международным симпозиумом в Гааге (1968г) [1]. Данное положение действует и в наше время [2, с.68], т.е. является арбитражным. Однако, помимо нефтепродуктов, определено вещество близкое к нему - бензин, лабораторное определение которого не утверждено [1 - 3]. Понятие бензин очень расплывчато, т. к. он может быть этилированным или не этилированным, марка этилированного бензина А-80, А92, АИ95 имеет разное содержание тетраэтилсвенца от 0,2 до 0,75 мл на 1 л бензина [4, с.167]. Тетраэтилсвинец (ТЭС) очень токсичен, класс опасности 1, в водоеме его не должно быть [2, с.67]. Хотя это определение относительное и ограничено точностью, погрешностью исследования [2,3,5]. Надо уточнить, что тетраэтилсвинец не растворим в воде, а растворим в целом ряде органических растворителей: керосине, бензине, ацетоне, ароматических углеводородах [6]. Отсюда следует, что удаления ТЭС возможно только вместе с нефтепродуктами [4]. Как видим, понятие «нефтепродукты» очень не конкретное, т.к. содержит в своем определении смесь органических веществ с различными свойствами и классом опасности от 1 до 4 [2]. Анализируя показатель концентрации примесей в воде, который в СНГ повсеместно принят размерностью [мг/л], мы пришли к выводу, что он также не конкретен, т.к. не отражает фракционный состав смеси примесей [4]. На наш взгляд, более конкретным является англоязычное аналогичная размерность [млн-1], которое имеет международную юридическую силу [7]. Приведенный анализ доступных литературных источников, не дал ответ по формулам перевода размерностей [мг/л] в [млн-1] и наоборот. Нами был сделан самостоятельно данный расчет [4]. Необходимые условия выведения формулы: дисперсная среда однородна; примесь находится в единице объема (обычно 1 литр); под размерностью млн-1 подразумливается весовое отношение 1 частицы примеси к весу млн. частиц среды. Приведем расчет данной формулы для водной среды. ![]() 1 млн-1=1μ =([М1]/18) (мг/л)→ 0,0556·[Мпр] (мг/л), (1) 1 мг/л = (18/ [Мпр]) (млн-1) , (2) где МΣ – молекулярная масса воды; А – число Авогадро; М1 или Мпр – молекулярная (или приведенная) масса примеси находящаяся в воде. Для других жидких сред, значение концентрации Смг, Сμ примесей формулы 1 и 2 будут иметь универсальный вид: Смг = Кμ · Сμ, (1.3) Кμ = Мср/Мпр, (1.4) Сμ = Кмг· Смг, (1.5) Кмг= Мпр/Мср, (1.6) Кμ = 1/ Кмг, (1.7) где Кμ и Кмг - коэффициенты для пересчета, Мпр и Мср – молекулярный вес соответственно примеси и жидкой среды. Применительно к нефтепродуктам, поскольку эта смесь различных органических веществ, в формулу 1.3 или 1.5 надо вставить Мпр по приведенному рассчитанному значению: ![]() где Сi – вес примесей в анализируемой пробе, приведенной к 1 литру, Мi - мольный вес примеси, n – количество анализируемых примесей. Пример. Сделаем перевод размерности 15 млн-1 в мг/л, применительно к международному договору МАРПОЛ 73/78. Возьмем, условно, под понятие нефтепродукта один из самых токсичный его представителей - бензол с молекулярным весом 78,1, тогда: 15 млн-1 = (1815)/78,1 = 3,46 мг/л В списке допустимых величин показателей качества сточных вод и воды водоемов, приложение 2 [2], под понятием «нефтепродукты» попадают: 15 - бензол, 16 - бенз[а]пирен, 80 - стирол, 43 - ксилол, 57 - метилстирол, 85 - толуол, 135 - пропилбензол, 158 - циклогексан, 161 - циклогексен, 163 – этилбензол. Данный список явно не полный, почему в данный список попали эти вещества, по каким критериям они выбирались для списка - не известно. Для сравнения мы сделали список жидких нефтепродуктов из 60 химических соединений (табл. 2), отметив шрифтом позиции совпадения и степень изученности этих веществ. На наш взгляд критерием нахождение в данном списке должен быть объем товарооборота вещества в народном хозяйстве, уровень безвозвратных потерь в окружающую среду при его использовании. Рассмотрим некоторые физические и химические свойства углеводородов алифатического, алициклического, ароматического ряда, содержание в природе и их взаимодействие с водными организмами, человеком. Алканы (Ал.) – предельные углеводороды алифатического ряда, отвечающих эмпирической формуле CnH2n+2. Структурная изометрия среди алканов способствует большему многообразию представителей этого класса. Первые четыре представителя в обычных условиях – газы; следующие (от 5 до 15 атомов углерода) – жидкости; свыше 15 углеродных атомов – твердые вещества. Ал. отличаются большой стойкостью и малой химической активностью[8,9] . Получение. При перегонке нефти, переработки каменного и бурого углей, горючих сланцев, а также обычными методами синтеза [10] . ^ Низшие алканы содержатся в природных газах (до 97% метан), а также входят в состав попутных нефтяных газов. Ал. с большим числом углеродных атомов находятся в нефти. Велика доля Ал. биогенного происхождения. Ежегодно морская биота за счет фотосинтеза продуцирует 12 млн. т. Ал.[11]. В результате разложения гидробионтов алканы поступают в морскую воду; кроме того, они синтезируются из липидов погибших организмов. В Беринговом море на глубинах до 150 м и в мелководной части наблюдается перенасыщения метаном. В воде обнаружен этан, пропан. Содержание этана и пропана снижается с глубиной [11] . Содержание Ал. в морских организмах 1 – 200 мкг/г сырой массы [12]. До активного вмешательства человека в геологические процессы на Земле поступление Ал. в водоемы уравновешивалось их естественной убылью[13] . ^ На расстоянии до 3 км от газоперерабатывающего завода в атмосфере обнаруживались метан, этан, пропан, бутан, гептан, гексан [14]. В результате естественных выходов газа, нефти и загрязнений в море ежегодно поступает несколько млн. т. углеводородов [11]. Выхлопные газы двигателей внутреннего сгорания представляют сложную, недостаточно изученную смесь токсичных компонентов, число которых достигает 200.; самая многочисленная группа среди них – углеводороды. Массовое содержание отдельных углеводородов, в процентах к сумме органических веществ: метана 6,2; бутана 3,1; изобутана 2,2; изооктана 20; пропана 1,8; 2-метилбутана 1,8; этилциклопентана 1,7; транс- 1,2 диметилциклопентана 1,7; пентана –1,5; 2-метилгексана 1,5; 2,3 – диметилпентана 1,4; гексана 1,3; 3- этилпентана 1,3; 2,4 – диметилпентана 1,0 и т.д. Из общего количества органических веществ в выхлопе приходится 32% на долю алкенов [15] . Среди углеродов С1-С13 в составе выхлопных газов автотранспорта 86% приходится на Ал., 13,4% - на ароматические углеводороды и 0,7% - на алкены [16]. ^ Наиболее важными представителя -ми ароматических углеводородов является бензол и его производные: этилбензол, толуол (метилбензол), ксилолы (диметилбензолы), кумол (изопропилбензол) и др., а также соединения, содержащие кратные углерод-углеродные связи в боковой цепи, например, стирол (винилбензол). Бензол. Химическая формула С6Н6, температура кипения 80,1 ºС, плотность 0,879 кг/м3. Это бесцветная, легко воспламеняющаяся жидкость, со своеобразным нерезким запахом. Бензол быстро испаряется из водоема в атмосферу (период полуиспарения составляет 37,3 мин. при 25ºС) [17]. В воде при определенных условиях растворяется до 0,5% бензола [9] . ^ Сточные воды производств основного органического синтеза, производств нефтехимических, химико-фармацевтических, пластмасс, взрывчатых веществ, ионообменных смол, лаков и красок и др. В стоках коксохимических заводов бензол содержится в концентрациях 100 – 160 мг/л, в сточных водах производства капролактама – 100 мг/л [18], производство изопропилбензола – до 20 000 мг/л [19] . В ноябре 2005 г. произошел выброс около 100 тн производного бензола - нитробензола (анилина) в р. Сунгори (Китай), пятно в десятки километров по р. Амур ушло в Японское море, отразившееся на гибели и токсикации рыб. ^ ПДК по бензолу для хозяйственно – питьевого и рыбохозяйственных водоемов составляет 0,5 мг/л (с-т), класс опасности 2 [2]. Порог ощущения запаха бензола в воде 0,5 мг/л при 20 ºС. При 2,9 мг/л запах интенсивностью в 1 балл, при 7,5 мг/л – 2 балла; мясо рыб приобретает неприятный запах при 10,0 мг/л. Привкус при 1,2 мг/л – 1 балл, при 2,5 мг/л – 2 балла. Наличие в воде бензола до 5 мг/л не изменяет процессы БПК; под влиянием биохимических процессов в воде бензол окисляется слабо [20] . ^ На беспозвоночных животных растворы бензола действуют сильнее, чем на водоросли [21]. Действие бензола на рыб [22], табл. 1: Таблица 1. – ^
Основной путь поступления бензола (а также и других нефтепродуктов) ингаляционный. Исследования данного аспекта проблемы опускаем, т. к. она выходит за тему диссертации. Проанализируем, как бензол через питьевую воду воздействует на человека. В городах США содержание бензола с питьевой водой в среднем 0,0002 мг/л, но в некоторых случаях эта величина достигает 0,1 мг/л и более. В Канаде отмечены концентрации ниже 0,000 01 мг/л, но и наблюдали и до 0,019 мг/л [9]. ПДК по бензолу для хозяйственно – питьевого и рыбохозяйственных водоемов составляет 0,5 мг/л (с-т), класс опасности 2 [2]. Из пищевых продуктов США яйца содержат бензола в количестве до 2,1 мкг/кг, мясо – 19 мкг/кг, вареное или жареное мясо – около 2 мкг/кг. Имеются указания на то, что бензол в естественных условиях встречается в некоторых фруктах, рыбе, овощах, орехах, молочных продуктах [17, 23]. Толуол (Т.) (метилбензол). Химическая формула С6Н5-СН3, температура кипения 110,63 ºС, плотность 0,8669 кг/м3. Бесцветная прозрачная жидкость с характерным запахом бензина. Максимальная растворимость в морской воде 380 мг/л [9]. ^ Основными источниками поступления толуола в окружающую среду является химическое производство взрывчатых веществ, эпоксидных смол, лаков и красок и др. Большая часть испаряется в атмосферу и с дождями поступает в почву, в воду [22, 24]. В мировом масштабе эмиссия Т. может достигать: при использования ув качестве растворителя 1-1,5 млн. т; при производстве, транспортировке и очистке нефти (как часть общей утечки углеводородов) 3 – 4 млн. т; в качестве компонента автомобильных выхлопных газов – около 2 млн. т. Общее количество Т., попадающего в окружающую среду в США, составляет за год 450 тыс. т (из них 99,7% - в атмосферу). Общее годовое количество Т., попадающего в моря и океаны, составляет в мире около 500 тыс. т [25]. В 1,6 км от химического завода с наветренной стороны концентрация толуола в атмосфере составляла 0,0055 мг/м3, а с подветренной стороны в 1,6; 6,0 и 16,5 км от завода – 0,6; 0,075 и 0,055 мг/м3 соответственно [26]. Таким образом, на данном примере, удельный фоновый выброс в атмосферу на расстоянии 1,6 км составляет 0,6 – 0,0055 = 0,5945 (мг/м3). Попадая в окружающую среду, Т. оказывается, в основном, в атмосфере и поверхностных водах [9]. Из – за низкой растворимости транспорт Т. из воды в атмосферу происходит быстро: при испарении из слоя воды толщиной 1 м через 5 ч концентрация Т. снижается вдвое. Полупериод испарения из водоемов при 25 ºС составляет 30,6 мин. В дождевой воде Т. определялся в концентрациях 0,00013 – 0,0007 мг/л. В 17% всех исследованных поверхностных вод концентрации Т. превышали 0,01 мг/л [26]. Миграция Т. из почвы в почвенные воды весьма важна, так как при этом загрязняются источники питьевой воды. Т. обнаружен в 85% из 39 исследованных колодцев США в концентрациях до 0,01 мг/л [26], попадаюoего в поверхностные слои песчаных почв, улетучивается в атмосферу в концентрациях 0,9 – 0,0002 мг/м3; полупериод существования 4,9 ч [27]. Средние концентрации Т. в атмосфере США и Европы в 1971 – 80 гг. составляли 0,0005 – 1,31 мг/м3, самый высокий уровень достигал 5,5 мг/м3. Атмосферное окисление удаляет около 50% Т. менее чем за 2 суток (полупериод существования 12,8 ч), вследствие чего он не остается в атмосфере долго и не удаляется другими механизмами [26, 28]. В атмосфере северного полушария содержание Т. больше, чем в южном, особенно зимой; средняя концентрация Т. в атмосфере планеты колеблется в пределах 0 – 0,00075 мг/м3 [29]. ^ ПДК по Т. для хозяйственно – питьевого и рыбохозяйственных водоемов составляет 0,5 мг/л (орг.), класс опасности 4 [2]. Запах Т. интенсивностью в 4 балла ощутим при концентрации его в воде 5,2 мг/л. Порог ощущения запаха (1 балл) соответствует концентрации Т. 0,67 мг/л. Пороговая концентрация по вкусу 1,1 мг/л, запах в мясе рыбы ощущается при 0,25 мг/л. Концентрация в воде 25 – 75 мг/л мало сказывается на окисляемости и БПК; 25 мг/л мало влияют на процесс нитрификации, 50 мг/л тормозят его; 75 мг/л не влияет на кислородный режим. В концентрации 200 мг/л Т. тормозит процесс биохимической очистки сточных вод в аэротенках – смесителях [22]. Наркотический эффект Т. вызывает у водных организмов в концентрациях 11 мг/л в пресной воде и 8 мг/л в морской воде. Симптомы прогрессируют от слабого возбуждения до обездвиживания. Лосось избегает воды с концентрацией Т. выше 2 мг/л [30]. При 10,0 мг/л гибнет радужная форель; 34,0 мг/л вызывают гибель гуппи через 140 суток; при 130,0 мг/л лещ гибнет через 15 мин [22]. |
![]() | Почвенные и водные экосистемы. Лекция 1 Водные экосистемы. Мировой океан, прибрежные и внутренние заболоченные территории, эстуарии | ![]() | А. И. Демков Исследования по эффективности фильтрации дренажных вод... Исследования по эффективности фильтрации дренажных вод Запорожской аэс от нефтепродуктов |
![]() | Система Тотального Подчинения Женщины Воздействие взглядом. Воздействие голосом. Воздействие прикосновениями. Итог. Погружение в транс | ![]() | Водные ресурсы и водные мелиорации Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных... |
![]() | А. И. Демков Решение экологических проблем Байкала Байкале не равнодушен к его судьбе. Поражает и восхищает величие озера моря и уникальная прозрачная вода, которая вокруг целлюлозно... | ![]() | Правила промышленной безопасности нефтебаз и складов нефтепродуктов I. Общие положения Правила промышленной безопасности нефтебаз и складов нефтепродуктов (далее Правила) устанавливают требования, соблюдение которых... |
![]() | Правила промышленной безопасности нефтебаз и складов нефтепродуктов*1 пб 09-560-03 Правила промышленной безопасности нефтебаз и складов нефтепродуктов*1 (далее Правила) устанавливают требования, соблюдение которых... | ![]() | Постановление Госгортехнадзора РФ от 20 мая 2003 г. №33 Об утверждении... Направить Правила промышленной безопасности нефтебаз и складов нефтепродуктов на государственную регистрацию в Министерство юстиции... |
![]() | Замените слово воздействие ... | ![]() | Замените слово воздействие ... |