Исследование функций




Скачать 304.13 Kb.
НазваниеИсследование функций
страница2/4
Дата публикации06.06.2013
Размер304.13 Kb.
ТипИсследование
litcey.ru > Математика > Исследование
1   2   3   4
^

Рис. 1. Два члена разложения






Рис. 2. Четыре члена разложения







^

Рис. 3. Шесть членов разложения





Рис. 4. Десять членов разложения

Чтобы получить наиболее точное значение функции при наименьшем количестве членов разложения надо в формуле Тейлора в качестве параметра а выбрать такое число, которое достаточно близко к значению х, и значение функции от этого числа легко вычисляется.
Для примера вычислим значение sin200.

Предварительно переведем угол 200 в радианы: 200 = /9.

Применим разложение в ряд Тейлора, ограничившись тремя первыми членами разложения:



В четырехзначных таблицах Брадиса для синуса этого угла указано значение 0,3420.
Выше говорилось, что при х0 функция sinx является бесконечно малой и может при вычислении быть заменена на эквивалентную ей бесконечно малую функцию х. Теперь видно, что при х, близких к нулю, можно практически без потери в точности ограничиться первым членом разложения, т.е. sinx  x.
Пример: Вычислить sin2801315.
Для того, чтобы представить заданный угол в радианах, воспользуемся соотношениями:
10 = ; 280;

1; ;

; ;
рад
Если при разложении по формуле Тейлора ограничиться тремя первыми членами, получим: sinx = .

Сравнивая полученный результат с более точным значением синуса этого угла,
sin= 0,472869017612759812,

видим, что даже при ограничении всего тремя членами разложения, точность составила 0,000002, что более чем достаточно для большинства практических технических задач.
^ Функция f(x) = ln(1 + x).
Получаем: f(x) = ln(1 + x); f(0) = 0;

f(x) = ;





………………………………………


Итого:







Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.
ln1,5 = 0,405465108108164381

Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.

Ниже будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений и к вычислению интегралов.
^ Применение дифференциала к приближенным вычислениям.
Дифференциал функции y = f(x) зависит от х и является главной частью приращения х.

Также можно воспользоваться формулой


Тогда абсолютная погрешность



Относительная погрешность


Более подробно применение дифференциала к приближенным вычислениям будет описано ниже.
При использовании компьютерной версии “^ Курса высшей математики” возможно запустить программу, которая производит разложение любой функции в ряды Тейлора и Маклорена, а также вычисляет значение функции в заданной точке, выводит погрешность вычислений.




^ Теоремы о среднем.

Теорема Ролля.
(Ролль (1652-1719)- французский математик)
Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка , a < < b, в которой производная функция f(x) равная нулю,

f() = 0.
Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка  такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.
Теорема Ролля имеет несколько следствий:


  1. Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем

f(a) = f(b) = 0, то существует по крайней мере одна точка , a <  < b, такая, что f() = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.


  1. Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.


^ Теорема Лагранжа.
(Жозеф Луи Лагранж (1736-1813) французский математик)
Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом интервале найдется по крайней мере одна точка

a <  < b, такая, что .
Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.
Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа.

Отношение равно угловому коэффициенту секущей АВ.

у

В

А
0 а  b x

Если функция f(x) удовлетворяет условиям теоремы, то на интервале (а, b) существует точка  такая, что в соответствующей точке кривой y = f(x) касательная параллельна секущей, соединяющей точки А и В. Таких точек может быть и несколько, но одна существует точно.




Определение. Выражение называется формулой
Лагранжа или формулой конечных приращений.

В дальнейшем эта формула будет очень часто применяться для доказательства самых разных теорем.

Иногда формулу Лагранжа записывают в несколько другом виде:

,

где 0 <  < 1, x = b – a, y = f(b) – f(a).




^ Теорема Коши.
( Коши (1789-1857)- французский математик)
Если функции f(x) и g(x) непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и g(x) 0 на интервале (a, b), то существует по крайней мере одна точка , a < < b, такая, что

.
Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке .
Следует отметить, что рассмотренная выше теорема Лагранжа является частным случаем (при g(x) = x) теоремы Коши. Доказанная нами теорема Коши очень широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено ниже.
^ Раскрытие неопределенностей.

Правило Лопиталя.

(Лопиталь (1661-1704) – французский математик)

К разряду неопределенностей принято относить следующие соотношения:


Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при ха равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.


Пример: Найти предел .
Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f(x) = 2x + ; g(x) = ex; ;
Пример: Найти предел .

; ; .
Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел .
; ;

; ;



; ;
Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

Пример: Найти предел .
; ;

- опять получилась неопределенность. Применим правило Лопиталя еще раз.
; ;

- применяем правило Лопиталя еще раз.
; ; ;
Неопределенности вида можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при ха. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).
Пример: Найти предел .
Здесь y = xx, lny = xlnx.

Тогда . Следовательно
Пример: Найти предел .
; - получили неопределенность. Применяем правило Лопиталя еще раз.

; ;
^ Производные и дифференциалы высших порядков.
Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную



Если найти производную функции f(x), получим
1   2   3   4

Похожие:

Исследование функций iconИсследование функций тема исследование функций
Бугров Я. С., Никольский С. М. Высшая математика: Учеб для вузов: в 3т. 5-е изд.,стер. М.: Дрофа. (Высшее образование. Современный...
Исследование функций iconИсследование функций
Применим разложение в ряд Тейлора, ограничившись тремя первыми членами разложения
Исследование функций iconМетодические указания по подготовке к экзамену для студентов заочной формы обучения зэ11
Метод интегрирования по частям. Разложение рациональных функций на простейшие дроби. Интегрирование рациональных функций. Интегрирование...
Исследование функций iconУчебно-методический комплекс для студентов заочной формы обучения...
Метод интегрирования по частям. Разложение рациональных функций на простейшие дроби. Интегрирование рациональных функций. Интегрирование...
Исследование функций iconУчебно-методический комплекс для студентов заочной формы обучения...
Метод интегрирования по частям. Разложение рациональных функций на простейшие дроби. Интегрирование рациональных функций. Интегрирование...
Исследование функций icon«Исследование функции на четность»
Повторить определение функции. Ввести понятие симметричного множества, определения четной и нечетной функции. Рассмотреть свойства...
Исследование функций iconФункции нескольких переменных
При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т к все полученные результаты...
Исследование функций iconИсследование наилучших приближений непрерывных периодических функций...
Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных...
Исследование функций iconИсследование наилучших приближений непрерывных периодических функций...
Материалы данного файла могут быть использованы без ограничений для написания собственных работ с целью последующей сдачи в учебных...
Исследование функций iconИсследование функций с помощью производной
Теорема. 1) Если функция f(X) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
litcey.ru
Главная страница