«Евклид и его вклад в науку» Работу




Скачать 280.3 Kb.
Название«Евклид и его вклад в науку» Работу
страница1/5
Дата публикации09.03.2013
Размер280.3 Kb.
ТипБиография
litcey.ru > Математика > Биография
  1   2   3   4   5


Купчинские юношеские чтения «Наука. Творчество. Поиск».
Секция «Математика»


«Евклид и его вклад в науку»



Работу выполнил ученик 6 «Б» класса
Суровегин Николай
Руководитель: Васильева
Дарья Геннадьевна


Санкт-Петербург 2008

Оглавление

  1. Введение…………………………………….…3

  2. Математика в Древней Греции……………..4

  3. Биография Евклида……………………….….5

  4. Алгоритм Евклида……………………………8

  5. Аксиоматика....……………………………….11

  6. Евклидова геометрия и V постулат………..12

  7. Начала…………………………………………19

  8. Задачи из начал Евклида…………………...22

  9. Решение задач………………………………..23

  10. Ссылки на информационные источники…...24

  11. Заключение…………………………………..25

I. Введение

В этом реферате я постараюсь рассказать вам всё, что я знаю о великом древнегреческом математике Евклиде. Идея написать именно про него пришла мне в голову после того, как я узнал об алгоритме Евклида. Этот ученый, очень много сделал для алгебры и геометрии, и его открытиями мы пользуемся постоянно. В реферате также есть практические задачи из начал, книг Евклида.

^

Глава II.
Математика в Древней Греции


Умственное развитие, а вместе с ним и развитие науки никогда не шло во всём человечестве равномерно. В то время как одни народы стояли во главе умственного движения человечества, другие оказывались едва вышедшими из первобытного состояния. Когда у последних вместе с улучшением условий их жизни, появлялись, под действием внутренних или внешних импульсов, стремления к приобретению знаний, тогда они должны были прежде всего догонять передовые племена. Если в то же время передовые племена, достигнув высшей доступной им по их способностям или по созданным для них историей условиям жизни степени развития, вырождались и падали, в умственном развитии всего человечества происходил застой или даже видимый временный упадок: приобретение новых знаний прекращалось и умственная работа человечества сводилась единственно к упомянутому усвоению отставшими племенами знаний, уже приобретённых человечеством. Только по достижении этого усвоения отставшие племена получали возможность вести далее дело приобретения новых знаний и через это, в свою очередь, становиться во главе умственного движения человечества. Таким образом, в истории умственной деятельности каждого народа, когда-нибудь занимавшего место в ряду передовых деятелей человечества и затем свершившего весь свой жизненный цикл, исследователь должен различать три периода: период усвоения знаний, уже приобретённых человечеством; период самостоятельной деятельности в общей всему человечеству области приобретения новых знаний и, наконец, период упадка и умственного вырождения. Обращаясь от этого общего рассмотрения хода умственного развития человечества к той из отдельных его областей, которая представляется развитием М., мы находим, что при современном состоянии историко-математических знаний нам доступно изучение вполне завершённого цикла деятельности отдельного народа в области развития М. только на одной нации, на древних греках.

^ Глава III
Биография Евклида


ЭВКЛИД (Euclid c.356-300 ВС)

БИОГРАФИЯ

Эвклид - древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике. Биографические сведения о жизни и деятельности Эвклида крайне ограничены. Известно, что он родом из Афин, был учеником Платона. Научная деятельность его протекала в Александрии, где он создал математическую школу.

^ ДОСТИЖЕНИЯ В МАТЕМАТИКЕ

Главные труды Эвклида "Начала" (латинизированное назв.- "Элементы") содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел, алгебры, общей теории отношений и метода определения площадей и объемов, включающего элементы пределов (Метод исчерпывания). В "Началах" Эвклид подытожил все предшествующие достижения греческой математики и создал фундамент для ее дальнейшего развития. Историческое значение "Начал" Эвклида заключается в том, что в них впервые сделана попытка логического построения геометрии на основе аксиоматики. Основным недостатком аксиоматики Эвклида следует считать ее неполноту; нет аксиом непрерывности, движения и порядка, поэтому Эвклиду часто приходилось апеллировать к интуиции, доверять глазу. Книги XIV и XV являются более поздними добавлениями, но являются ли первые тринадцать книг созданием одного человека или школы, руководимой Эвклидом, не известно. С 1482г. "Начала" Эвклида выдержали более 500 изд. на всех языках мира.

"Начала"

Первые четыре книги "Начал" посвящены геометрии на плоскости, и в них изучаются основные свойства прямолинейных фигур и окружностей.

Книге I предпосланы определения понятий, используемых в дальнейшем. Они носят интуитивный характер, поскольку определены в терминах физической реальности: "Точка есть то, что не имеет частей". "Линия же - длина без ширины". "Прямая линия есть та, которая равно расположена по отношению точкам на ней". "Поверхность есть то, что имеет только длину и ширину" и т.д.

За этими определениями следуют пять постулатов: "Допустим:
1) что от всякой точки до всякой точки можно провести прямую линию;
2) и что ограниченную прямую можно непрерывно продолжить по прямой;
3) и что из всякого центра и всяким раствором может быть описан круг;
4) и что все прямые углы равны между собой;
5) и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньше двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых."

Три первых постулата обеспечивают существование прямой и окружности. Пятый, так называемый постулат о параллельных - самый знаменитый. Он всегда интриговал математиков, которые пытались вывести его из четырех предыдущих или вообще отбросить, до тех пор, когда в XIX в. обнаружилось, что можно построить другие, неевклидовы геометрии и что пятый постулат имеет право на существование. Затем Эвклид сформулировал аксиомы, которые в противоположность постулатам, справедливым только для геометрии, применимы вообще ко всем наукам. Далее Эвклид доказывает в книге I элементарные свойства треугольников, среди которых - условия равенства. Затем описываются некоторые геометрические построения, такие, как построение биссектрисы угла, середины отрезка и перпендикуляра к прямой. В книгу I включены также теория параллельных и вычисление площадей некоторых плоских фигур (треугольников, параллелограммов и квадратов). В книге II заложены основы так называемой геометрической алгебры, восходящей к школе Пифагора. Все величины в ней представлены геометрически, и операции над числами выполняются геометрически. Числа заменены отрезками прямой. Книга III целиком посвящена геометрии окружности, а в книге IV изучаются правильные многоугольники, вписанные в окружность, а также описанные вокруг нее.

Теория пропорций, разработанная в книге V,одинаково хорошо прилагалась и к соизмеримым величинам и к несоизмеримым величинам. Эвклид включал в понятие "величины" длины, площади, объемы, веса, углы, временные интервалы и т. д. Отказавшись использовать геометрическую очевидность, но избегая также обращения к арифметике, он не приписывал величинам численных значений. Первые определения книги V "Начал" Эвклида: 1. Часть есть величина (от) величины, меньшая (от) большей, если она измеряет большую. 2. Кратное же - большая (от) меньшей, если она измеряется меньшей. 3. Отношение есть некоторая зависимость двух однородных величин по количеству. 4. Говорят, что величины имеют отношение между собой, если они, взятые кратно, могут превзойти друг друга. 5. Говорят, что величины находятся в том же отношении: первая ко второй и третья к четвертой, если равнократные первой и третьей одновременно больше, или одновременно равны, или одновременно меньше равнократных второй и четвертой каждая каждой при какой бы то ни было кратности, если взять их в соответственном порядке. 6. Величины же, имеющие то же отношение, пусть называются пропорциональными. Из восемнадцати определений, помещенных в начале всей книги, и общих понятий, сформулированных в книге I, с восхитительным изяществом и почти без логических недочетов Эвклид вывел (не прибегая к постулатам, содержание которых было геометрическим) двадцать теорем, в которых устанавливались свойства величин и их отношений.

В книге VI теория пропорций книги V применяется к прямолинейным фигурам, к геометрии на плоскости и, в частности, к подобным фигурам, причем "подобные прямолинейные фигуры суть те, которые имеют углы, равные по порядку, и стороны при равных углах пропорциональные". Книги VII ,VIII и IX составляют трактат по теории чисел; теория пропорций в них прилагается к числам. В книге VII определяется равенство отношений целых чисел, или, с современной точки зрения, строится теория рациональных чисел. Из многих свойств чисел, исследованных Эвклидом (четность, делимость и т.д.), приведем, например, предложение 20 книги IX, устанавливающее существование бесконечного множества "первых", т.е. простых чисел: "Первых чисел существует больше всякого предложенного количества первых чисел". Его доказательство от противного до сих пор можно найти в учебниках по алгебре.

Книга X читается с трудом; она содержит классификацию квадратичных иррациональных величин, которые там представлены геометрически прямыми и прямоугольниками. Вот как сформулировано предложение 1 в книге X "Начал" Эвклида: "Если заданы две неравные величины и из большей вычитается часть, большая половины, а из остатка - снова часть, большая половины, и это повторяется постоянно, то когда-нибудь остается величина, которая меньше, чем меньшая из данных величин". На современном языке: Если a и b - положительные вещественные числа и a >b, то всегда существует такое натуральное число m, что mb > a. Эвклид доказал справедливость геометрических преобразований.

Книга XI посвящена стереометрии. В книге XII, которая также восходит, вероятно, к Евдоксу, с помощью Метода исчерпывания площади криволинейных фигур сравниваются с площадями многоугольников. Предметом книги XIII является построение правильных многогранников. Построение Платоновых тел, которым, по-видимому завершаются "Начала", дало основание причислить Эвклида к последователям философии Платона.

^ ОБЛАСТИ ИНТЕРЕСОВ

Кроме "Начал" до нас дошли такие произведения Эвклида: книга под латинским названием "Data" ("Данные") (с описанием условий, при которых какой-нибудь математический образ можно считать "данным"); книга по оптике (содержащая учение о перспективе), по катоптрике (излагающую теорию искажений в зеркалах), книга "Деление фигур". Не сохранилась педагогическая работа Эвклида "О ложных заключениях" (в математике). Эвклид написал также сочинения по астрономии ("Явления") и музыке.

^ ЗАСЛУГИ ЕВКЛИДА

ЕВКЛИДА ТЕОРЕМА о простых числах: множество простых чисел является бесконечным ("Начала" Евклида, книга IX, теорема 20). Более точную количественную информацию о множестве простых чисел в натуральном ряде содержит Чебышева теорема о простых числах и асимптотич. закон распределения простых чисел.

ЕВКЛИДОВА ГЕОМЕТРИЯ - геометрия пространства, описываемого системой аксиом, первое систематическое (но не достаточно строгое) изложение к-рой было дано в "Началах" Евклида. Обычно пространство Е. г. описывается как совокупрость объектов трех родов, называемых "точками", "прямыми", "плоскостями"; отношениями между ними: принадлежности, порядка ("лежать между"), конгруэнтности (или понятием движения); непрерывностью. Особое место в аксиоматике Е. г. занимает, аксиома о параллельных (пятый постулат). Первая достаточно строгая аксиоматика Ё. г. была предложена Д. Гильбертом (D. Hilbert, см. Гильберта система аксиом). Существуют модификации системы аксиом Гильберта и другие варианты аксиоматики Е. г. Напр., в векторно-точечной аксиоматике за одно из основных понятий принято понятие вектора; в основу аксиоматики Е. г. может быть положено отношение симметрии (см. [5]).

ЕВКЛИДОВО ПОЛЕ - упорядоченное поле, в к-ром каждый положительный элемент является квадратом. Напр., поле R действительных чисел - Е. п. Поле Q рациональных чисел не является Е. п. в. Л. Попов.

ЕВКЛИДОВО ПРОСТРАНСТВО - пространство, свойства к-рого описываются аксиомами евклидовой геометрии. В более общем смысле Е. п.- конечномерное действительное векторное пространство Rn со скалярным произведением (х, у), х, к-рое в надлежащим образом выбранных координатах (декартовых) выражается формулой

^ Глава IV
Алгоритм Евклида


Алгори́тм Евкли́даалгоритм для нахождения наибольшего общего делителя двух целых чисел. Этот агоритм применим также для нахождения наибольшего общего делителя многочленов, кольца в которых применим алгоритм Евклида получили название Евклидовы кольца.

Евклид описал его в VII книге и в X книге «Начал». В обоих случаях он дал геометрическое описание алгоритма, для нахождения «общей меры» двух отрезков. Алгоритм Евклида был известен в древнегреческой математике по крайней мере за век до Евклида под названием «антифайресис» — «последовательное взаимное вычитание».
  1   2   3   4   5

Похожие:

«Евклид и его вклад в науку» Работу iconВклад этого ученого в науку метко охарактеризовал И. П. Павлов, назвавший...
Вклад этого ученого в науку метко охарактеризовал И. П. Павлов, назвавший Сеченова «отцом русской физиологии». Действительно, с его...
«Евклид и его вклад в науку» Работу iconОэт. №1 и 2 Этапы становления и развития эк теории. Русская экономическая...

«Евклид и его вклад в науку» Работу iconИнститути астрофизика
Международный астрономический союз (мас) высоко оценил вклад Таджикистана в астрономическую науку, присвоив 9 малым планетам имена...
«Евклид и его вклад в науку» Работу iconТермин «идеология» был введен в научный обиход фран­цузским исследователем...
«науку об идеях», выражая предпочтения определен­ных социальных групп в конкретно-исторических условиях. Од­нако впоследствии значение...
«Евклид и его вклад в науку» Работу iconВиноградов Иван Матвеевич 4 Давид Гильберт 5 Рене Декарт 6 Евклид

«Евклид и его вклад в науку» Работу iconКафедра «Технологическое оборудование и пищевые технологии»
За многолетнюю и плодотворную работу по подготовке высококвалифицированных кадров, вклад в развитие Тамбовского государственного...
«Евклид и его вклад в науку» Работу iconCоциология эмиля дюркгейма
Но и католиком Дюркгейм не стал, так же, впрочем, как и атеистом. С юных лет и до конца жизни он оставался агностиком: Постоянно...
«Евклид и его вклад в науку» Работу iconБешено заколотилось сердце. В мозгу замелькали мысли: Будильник, чтоб его! На работу?
Проснулся Вадим от тревожного резкого звона, повергшего его в стрессовое состояние. Бешено заколотилось сердце. В мозгу замелькали...
«Евклид и его вклад в науку» Работу icon8 февраля День Рождения выдающегося русского учёного, Светлого Воина,...
Но ещё не вечер! И мы, почитатели его таланта, его подвига во имя человечества и соратники по Движению вспоминаем в этот день о нём...
«Евклид и его вклад в науку» Работу iconАдминистрация города киселевска управление образования
От всей души поздравляю с профессиональным праздником Днем Учителя! Выражаю вам искреннюю признательность и благодарность за большой...
Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
litcey.ru
Главная страница